

MATHEMATICS

PAPER: MTMA-IV

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

Full Marks- 8

1. Answer any *four* questions from the following:

- (a) Find the equation of a sphere which passes through the centre of the sphere $x^2 + y^2 + z^2 4x + 2y 4z + 3 = 0$ and touch this sphere at (1, 1, 1).
- (b) Find the equations of the generators of the hyperbolic paraboloid $25x^2 4y^2 = z$ passing through the point (0, 1, -4).
- (c) Find the complete integral of $q = 5p^2 + 2$.
- (d) Write the following game problem as a linear programming problem with respect to the player *B*.

	Player B			
		B_1	<i>B</i> ₂	<i>B</i> ₃
Player A	A ₁	0	-1	2
	<i>A</i> ₂	1	0	-1
	<i>A</i> ₃	-2	1	0
\mathbf{V} (() ()				

- (e) Check whether the set $X = \{(x, y) : xy \le 4\}$ is convex.
- (f) An engine working at 400 H.P. pulls a train of 150 tons along a level track, the resistances being 15 lbs-wt per ton. When the velocity of the train is 30 m.p.h., find its acceleration.
- (g) If the radial and cross-radial velocities of a particle be μr and $\lambda \theta$ respectively then find the path of the particle.
- (h) The law of motion of a particle in a straight line is $s = \frac{1}{2}vt$. Show that the 2 acceleration is constant.

1

2 2

 $2 \times 4 = 8$

2

2

2 2

2

GROUP-B

Full Marks- 42

			Answe	er any <i>thre</i>	e questions from the following	14×3=42
2.	(a)	Reduce the e and find the r	quation x^2 nature.	$+2y^{2}-3z$	$x^2 - 4yz + 8zx - 12xy + 1 = 0$ to its canonical form	n 7
	(b) Find the equation of the cone with vertex at the origin and which passes through the				e 7	
		curves	given	by	$x^{2} + y^{2} + z^{2} + x - 2y + 3z - 6 = 0 \qquad \text{and} \qquad $	d
		$x^2 + y^2 + z^2$	+2x - 3y +	4z - 7 = 0.		

3. (a) Solve:

$$2\frac{d^2y}{dx^2} - \frac{dy}{dx} + 9y - \frac{d^2z}{dx^2} - \frac{dz}{dx} - 3z = 0 \text{ and } 2\frac{d^2y}{dx^2} + \frac{dy}{dx} + 7y - \frac{d^2z}{dx^2} + \frac{dz}{dx} - 5z = 0$$

(b) Solve the dual of the problem

Maximize
$$Z = 3x_1 + 4x_2$$

Subject to
$$x_1 - x_2 \le 1$$
$$3x_1 + x_2 \ge 4$$
$$x_1 - 3x_2 \le 3$$
$$x_1, x_2 \ge 0$$

From the dual solution, discuss the nature of the primal problem.

4. (a) Solve the following transportation problem:

	A	В	С	D	
Ι	6	4	2	7	8
II	5	1	4	6	14
III	6	5	2	5	9
IV	4	3	2	1	11
	7	13	12	10	

(b) Solve graphically the following game problem:

		Player B		
		B_1	B_2	
	A_1	1	-3	
	A_2	3	5	
Player A	A_3	-1	6	
	A_4	4	1	
	A_5	2	2	
	A_6	-5	0	

7

7

7

7

B.Sc./Part-II/Hons./MTMA-IV/2020

- 5. (a) The velocity at any point of a central orbit is $\frac{1}{n}$ th of what it would be for a circular orbit at the same distance; show that the central force varies as $\frac{1}{r^{2n^2+1}}$ and the equation of its orbit is $r^{n^2-1} = a^{n^2-1} \cos(n^2-1)\theta$.
 - (b) Find the tangential and normal components of velocity and acceleration of a particle which describes a plane curve.
- 6. (a) A particle hangs at rest at the end of an elastic string whose unstretched length is a. In the position of equilibrium, the length of the string is b and $\frac{2\pi}{n}$ is the time of an oscillation about this position. At time zero, when the particle is in equilibrium, the point of suspension beings to move so that the downward displacement at t is Show that length of the string c sin pt. the at time t is $b - \frac{cnp}{n^2 - n^2} \sin nt + \frac{cp^2}{n^2 - n^2} \sin pt$. If p = n, show that the length of the string at time t is $b - \frac{c}{2} \sin nt - \frac{cn}{2} t \sin nt$.
 - (b) A particle is projected under gravity with a velocity *u* at an angle α to the horizon in a medium whose resistance equal to *mk* times the velocity. Show that the path of the particle is $y = \frac{g}{k^2} \log \left(1 \frac{kx}{u \cos \alpha}\right) + \frac{x}{u \cos \alpha} \left(u \sin \alpha + \frac{g}{k}\right)$. Find the horizontal range of the particle.
- 7. (a) If a rocket, originally of mass M, throws off every unit of time a mass eM with relative velocity V, and if M' be the mass of the case etc., show that it cannot rise at once unless eV > g, not at all unless $e\frac{MV}{M'} > g$. If it just rise vertically at once, show that the greatest velocity is $V \log \frac{M}{M'} \frac{g}{e} \left(1 \frac{M'}{M}\right)$ and that the greatest height it reaches is $\frac{V^2}{2g} \log \left(\frac{M}{M'}\right)^2 + \frac{V}{e} \left(1 \frac{M'}{M} \log \frac{M}{M'}\right)$.
 - (b) A mass m, after falling freely through d feet beings to rise a mass M greater than itself connected with it by means of an inextensible string passing over a smooth pulley. Show that M will have returned to the original position at the end of time

$$\frac{2m}{M-m}\sqrt{\frac{2d}{g}}.$$

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

-×-

7

7

7

7

7

7