

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours Part-III Examination, 2020

MATHEMATICS

PAPER-MTMA-VI

Time Allotted: 2 Hours

Full Marks: 50

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

GROUP-A

[Marks: 25]

Answer any one question from Question Nos. 1 to 3 and any one from **Question Nos. 4 and 5**

- Answer any *one* question from the following: 1.
 - (a) Give the classical and frequency definitions of probability. State the drawbacks of these definitions.
 - (b) Prove that the most probable number of successes in Bernoullian sequence of n trials is the integer(s) i_m given by the inequality

$$(n+1)p-1 \le i_m \le (n+1)p$$
,

where *p* is the constant probability of success in each trial.

- (c) Medical records show that two out of 19 persons in a certain town has a thyroid deficiency. If 15 persons in this town are randomly chosen and tested, what is the probability that at least one of them will have a thyroid deficiency? Also find the probability of exactly two persons having thyroid deficiency.
- (d) A missile was fired at a plane on which there are two targets, T_1 and T_2 . The probability of hitting T_1 is p_1 and that of hitting T_2 is p_2 . It is known that T_2 was not hit. Find the probability that T_1 was hit.
- (e) If $p = \frac{\mu}{n}$, where μ is a positive constant and 0 ,*n*is a positive integer,then prove that $\lim_{n \to \infty} {n \choose i} p^i (1-p)^{n-i} = e^{-\mu} \frac{\mu^i}{i!}.$

- 2. Answer any *one* question from the following:
 - (a) Let X be a continuous random variable and let $f_X(x)$ be the corresponding probability density function. Also let y = g(x) be a continuously differentiable function for all values of x. If $f_y(y)$ be the probability density function of the random variable Y, given by Y = g(X) and if $\frac{dy}{dx}$ is either positive or negative

1

for all x, then prove that $f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$, where $y \in \text{range of } g$.

 $5 \times 1 = 5$

 $5 \times 1 = 5$

B.Sc./Part-III/Hons./MTMA-VI/2020

- (b) If X is a $\gamma(l)$ variate, find the probability density function of \sqrt{X} .
- (c) Consider the random experiment of throwing a pair of dice. Let X denote the number of sixes and Y denote the number of fives that turn up. Find the joint p.m.f. of the two-dimensional random variable (X, Y) and the marginal p.m.f. of X and Y. Find the probability $P(X+Y \ge 2)$.
- (d) State Tchebycheff's theorem and hence prove Bernoulli's limit theorem.
- (e) Let X, Y be independent variates each having the density function $ae^{-ax}(0 < x < \infty)$, where a is a positive constant. Find the density function of $\frac{X}{Y}$. Prove that the variate $\frac{Y}{X+Y}$ is uniformly distributed over (0, 1).
- 3. Answer any *one* question from the following: 5×1 = 5
 (a) Prove that the expectation E(X) of a continuous random variable X, if it exists, 5
 can be expressed as E(X) = ∫₀[∞] {1-F(x)-F(-x)} dx where F(x) is the distribution function of X.
 (b) Find the median of binomial (5, 1/2) distribution. 5
 - (c) Define concept of convergence in probability. Let $X_n \xrightarrow{\to} a$ as $n \to \infty$ and $Y_n \xrightarrow{\to} b$ as $n \to \infty$, then show that $X_n Y_n \xrightarrow{\to} ab$ as $n \to \infty$.

5

5

5

6

7

7

(d) Find the mean and standard deviation of the continuous distribution with probability density function given by

$$f(x, y) = \begin{cases} 1 - |1 - x| & \text{if } 0 < x < 2\\ 0 & \text{elsewhere} \end{cases}$$

- (e) If X_1 , X_2 , X_3 be pairwise uncorrelated random variables, each having the same standard deviation, then find the correlation coefficient between $X_1 + X_2$ and $X_2 + X_3$.
- 4. (a) Define Sampling distribution and distribution of sample. What is standard error? Find the standard error of sample mean.
 - (b) Prove that the maximum likelihood estimate of the parameter α of the population having density function $f(x) = \frac{2(\alpha x)}{\alpha^2}$, $(0 < x < \alpha)$ for a sample x_1 of unit size is $2x_1$ and that this estimate is biased.
 - (c) A random sample of size 10 was drawn from a normal population with an unknown mean and a variance of 44.1. If the observations are 65, 71, 80, 76, 78, 82, 68, 72, 65, 81, obtain a 95% confidence interval for the population mean.

Given
$$\frac{1}{\sqrt{2\pi}} \int_{1.96}^{\infty} e^{-x^2/2} dx = 0.025$$

- 5. (a) Use the principle of least square to find the regression lines for the bivariate sample $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$. Also measure the goodness of fit of the regression lines.
 - (b) Apply Neyman Pearson theorem to construct a test of null hypothesis 6 $H_0: m = m_0$ against an alternative $H_1: m = m_1$ for a normal (m, σ) population, where σ is known and m_0, m_1 are two unequal numbers.
 - (c) Find by the method of likelihood ratio testing a test for the null hypothesis $H_0: m = m_0$ for a normal (m, σ) population when σ unknown.

GROUP-B

SECTION-I

[Marks: 15]

Answer any *one* question from the following $15 \times 1 = 15$

- 6. (a) What do you mean by "round off" errors in numerical data? Show how these 7.5 errors are propagated in a difference table. What is noise level?
 - (b) Show that the remainder in approximating f(x) by the interpolation polynomial 7.5 using distinct interpolating points x_0, x_1, \dots, x_n is of the form

$$(x-x_0)(x-x_1)....(x-x_n)\frac{f^{(n+1)}(\xi)}{(n+1)!},$$

where $\min\{x_0, ..., x_n\} < \xi < \max\{x_0, ..., x_n\}$.

- 7. (a) Prove the following for divided differences:
 - (i) $f(x_0, x_1, ..., x_n) = \frac{\Delta^n f(x_0)}{n! h^n}$, for equidistant arguments, where $x_r = x_0 + rh$, r = 0, 1, 2, ..., n, h > 0.
 - (ii) $f(x_0, x_1, \dots, x_n) = \beta^{-n} F(t_0, t_1, \dots, t_n)$ under the linear transformation $x = \alpha + \beta t$, where $x_i = \alpha + \beta t_i$, $i = 0, 1, \dots, n$ and $f(\alpha + \beta t) = F(t)$.
 - (b) Describe the method of false position for finding a real root of an equation f(x) = 0 and obtain the corresponding iteration formula. Discuss its advantages and disadvantages in comparison to Newton-Raphson method. 7.5
- 8. (a) Explain the principle of numerical differentiation. Deduce Lagrange's numerical 7.5 differentiation formula (without the error term).
 - (b) What do you mean by the open and closed type quadrature formula? Obtain 7.5 trapezoidal rule for numerical integration without the error term.

5+2.5

7

7

B.Sc./Part-III/Hons./MTMA-VI/2020

- 9. (a) State Gauss' elimination method with pivoting for a system of linear equations AX = B, where $A = (a_{ij})_{m \times n}$, $X = (x_1, x_2, \dots, x_n)^T$ and $B = (b_1, b_2, \dots, b_m)^T$. 7.5
 - (b) Solve the equation $\frac{dy}{dx} = y^2 + yx$, y(1) = 1 by modified Euler's method to obtain 7.5 y(1.2) and y(1.4).
- 10.(a) Discuss the bisection method for finding a simple real root of an equation f(x) = 0 lying in the interval [a, b]. Show that the method is certain to converge. 7.5
 - (b) Establish Newton's Backward interpolation formula. Where is this formula used? 7.5

SECTION-II

[Marks: 10]

		Answer any <i>one</i> question from the following	$10 \times 1 = 10$
11.(a)	(i) D	Draw the block diagram of a computer.	2+2+1
	(ii) D	Define a bit and a byte.	
	(iii) V	Vhat is a memory chip?	
(b)	(i) C	Convert (A35) ₁₆ into binary.	2+2+1
	(ii) U	Jse 2's complement to compute $10100.01_2 - 11011.10_2$.	
	(iii) F	Find the CNF of $xy' + x'y$.	
12.(a) (b)	Given 77/90 Write xe^x +	the values of <i>a</i> , <i>b</i> , <i>c</i> the lengths of three segments. Write a FORTRAN or C program to test whether they can form a triangle or not. a FORTRAN 77/90 or C program to find a real root of $log(1+x) - sec(\sqrt{x^2+1}) = 0$ by the method of bisection.	5 5
13.(a)	Write or not.	a FORTRAN 77/90 or C program to determine whether a number is prime.	5
(b)	Write 20 stu	a FORTRAN 77/90 or C program to arrange the marks in Mathematics for dents in a class in descending order.	5

____×____