Time Allotted: 2 Hours

PHYSICS

PAPER-PHSA-V

Full Marks: 50

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

UNIT-VA

- 1. Answer any *five* questions from the following:
 - (a) What do you mean by constraints? What is the type of constraint in case of pendulum with length varying with time?
 - (b) What is meant by canonical transformation?
 - (c) What is meant by proper time?
 - (d) Draw the world line of a particle moving with speed 2×10^8 m/s along x-axis.
 - (e) Two electrons move towards each other with speed 0.9c. Calculate the relative speed of one with respect to another.
 - (f) State the postulate of equal a priori probability.
 - (g) Draw the allowed phase space for a one dimensional linear harmonic oscillator of mass 'm', vibrating with frequency ' ω ' and energy ranging from 0 to E.
 - (h) What is Fermi momentum? Why is it non-zero even at T = 0?

GROUP-A

Answer any one question from the following

- 2. (a) A particle is constrained to be in a plane. It is subjected to a force directed to a fixed point 2+2+2 *P* on the plane and is inversely proportional to the square of the distance from *P*.
 - (i) Using polar coordinates, write the Lagrangian of this particle.
 - (ii) Write the Euler-Lagrange equation.
 - (iii) Show that angular momentum of the particle is conserved.
 - (b) Using Legendre transformation construct the Hamiltonian function from Lagrangian. Now 2+2 find the Hamilton's equations.
- 3. (a) Show that the transformation given by $Q = \sqrt{2q} e^a \cos p$, $P = \sqrt{2q} e^{-a} \sin p$ is 2 canonical.
 - (b) From Poisson Bracket relation $\{q_i, p_i\} = \delta_{ii}$, show that $\{L_x, L_y\} = L_z$.
 - (c) Consider the longitudinal motion of the system of masses and springs with M > m. 1+4
 - (i) Write down the Lagrangian of the system.

3×5=15

(ii) What are the normal mode frequencies of the system?

GROUP-B

Answer any one question from the following

- 4. (a) Write down the Lorentz transformation equations between two inertial frames moving 2 relative to each other with a velocity *v* along common *X*-axis.
 - (b) Show that two successive Lorentz transformation with velocities v_1 and v_2 in the same direction are equivalent to a single Lorentz transformation with a velocity $v = \frac{v_1 + v_2}{1 + \frac{v_1 v_2}{c^2}}$.
 - (c) What are (i) space-like (ii) time-like and (iii) light-like interval? Is it possible to transform 3+1 a time-like vector into a space-like one?
- 5. (a) Explain the phenomena 'Length contraction' using Lorentz transformation equations. 3
 - (b) Derive the relativistic expression for the kinetic energy of a particle. Show that it reduces 3 to the expression $\frac{1}{2}mv^2$ if $v \ll c$.
 - (c) A body of mass *m* at rest breaks up spontaneously into two parts having rest mass m_1 and m_2 and respective speeds v_1 and v_2 . Using conservation of mass-energy show that $m > m_1 + m_2$.

OR

GROUP-C

Answer any one question from the following

6. (a)) A classical particle is free to move in a cube of side L having its energy lying between E and $E + \Delta E$. Find the number of microstates available to it.	2 3
(b)) If three identical particles are distributed over three single particle states how many possibilities are allowed if the particles are (i) Bosons and (ii) Fermions.	2+2
(c)) Find the partition function of an ideal monatomic gas.	3
7. (a)) Sketch the FD-distribution function at the absolute zero of temperature and finite non-zero temperature.	2
(b)) Show that average energy at $T = 0$ is $\varepsilon_{av} = \frac{3}{5} \epsilon_F(0)$, where $\epsilon_F(0)$ is the Fermi energy a	t 4
	T = 0.	
(c)) (i) Show that average energy $\overline{E} = -\frac{\partial}{\partial\beta}(\ln Z)$ where $z = \sum_{r} e^{-\beta E_{r}}$ is the partition	n 4
	function.	
	(ii) Obtain an expression for $\overline{(\Delta E)^2} = \overline{E^2} - \overline{E}^2$. Show that $\overline{(\Delta E)^2} = \frac{\partial^2}{\partial \beta^2} (\ln Z)$.	

8. (a) Derive Bose-Einstein distribution function stating clearly the assumptions.4(b) Establish Planck's radiation law for a photon gas obeying B.E. statistics.4(c) What is Bose condensation?2

UNIT-VB

- 9. Answer any *five* questions from the following:
 - (a) What is the de-Broglie wave associated with an electron having kinetic energy 100 eV?
 - (b) What are the properties of a 'well-behaved' wave function?
 - (c) What do you mean by a stationary state in quantum mechanics?
 - (d) Using the vector atom model, determine the possible values of total angular momentum of an *f*-electron.
 - (e) Show that for a given principal quantum number *n*, maximum number of possible electrons is $2n^2$.
 - (f) Define the expectation value of a dynamical quantity.
 - (g) Angular part of the wave-function associated with a particle is given by $\psi(\theta, \phi) = \frac{1}{\sqrt{3}} (\sqrt{2}Y_{11} Y_{10})$, where $Y_{\rm lm}$'s represents spherical harmonics. A measurement of \hat{L}_2 on the state is followed by another measurement of \hat{L}_2 . Find the probability of getting $L_2 = 1$ in the first and second measurements.
 - (h) Show that the spin magnetic moment of electron is equal to the Bohr magneton.

GROUP-D

Answer any one question from the following

- 10.(a) Using Ehrenfest's theorem show that the expectation value of the position of a particle 6 moving in three dimensions with the Hamiltonian $H = \frac{\vec{p}^2}{2m} + V(\vec{r})$ satisfies $\frac{d}{dt} \langle \vec{r} \rangle = \frac{\langle \vec{p} \rangle}{m}$.
 - (b) Consider a particle that moves in one dimension. Two of its normalized energy 2+2 eigenfunctions are $\psi_1(x)$ and $\psi_2(x)$ with energy eigenvalues E_1 and E_2 . At t = 0 the wave function for the particle is

 $\phi = c_1 \psi_1(x) + c_2 \psi_2(x)$ where c_1, c_2 constants

- (i) Find the wave function $\phi(x, t)$ as a function of time, in terms of the given constants and initial condition.
- (ii) Find an expression for the expectation value of the particle position $\langle x \rangle$ as a function of time for the state $\phi(x, t)$ from part (i).
- 11.(a) State the orthonormality condition of two wave functions.
 - (b) Calculate the normalisation constant for a wave function (at t = 0) given by 2+(1+2) $\psi(x) = ae^{-\alpha^2 x^2/2}e^{ikx}$. Determine (i) the probability density and (ii) probability current density.
 - (c) A one dimensional wavefunction is given by $\psi(x) = \sqrt{\alpha}e^{-\alpha x}$. Find the probability of finding the particle between $x = \frac{1}{a}$ and $x = \frac{2}{a}$.

3

2

B.Sc./Part-III/Hons./PHSA-V/2020

- 12.(a) An electron is confined in a one dimensional box of length *L*. What should be the length of 2 the box to make its zero-point energy is equal to its rest mass energy (m_0c^2) ? Express the result in terms of Compton wavelength.
 - (b) If there is a two level system with energy eigenvalues E₁ and E₂ with corresponding eigenstates φ₁ and φ₂ respectively and the system is in a state ψ such that the probability of getting each of the energy value on measurement is equal to that of the other, find the time dependence of |ψ|².
 - (c) Show that for all the energy eigenstates in a harmonic oscillator $\langle x \rangle$ vanishes though $\langle x^2 \rangle$ 3 does not.

2

2

3

(d) At time t = 0 the wavefunction of the hydrogen atom is prepared as

$$\psi(\vec{r}, t, 0) = \frac{1}{\sqrt{10}} (2\psi_{100} + \psi_{210} + \sqrt{2}\psi_{211} + \sqrt{3}\psi_{21-1})$$

where the subscripts are values for the quantum numbers (n, l, m). Find the expectation value for the energy of the system.

- 13.(a) Show that for Hydrogen atom problem $[\hat{H}, \hat{L}^2] = 0$.
 - (b) Using the relation $[\hat{x}_i, \hat{p}_j] = i\hbar \delta_{ij}$, prove that $[\hat{L}_x, \hat{L}_z] = -i\hbar \hat{L}_y$ and $[\hat{L}_y, \hat{L}_z] = i\hbar \hat{L}_x$.
 - (c) If $\hat{L}_{+} = \hat{L}_{x} + i\hat{L}_{y}$, using previous relations, find $[\hat{L}_{z}, \hat{L}_{+}]$. If ϕ_{m} is an eigenfunction of \hat{L}_{z} with eigenvalue $m\hbar$, prove that $\hat{L}_{+}\phi_{m}$ is also another eigenfunction of \hat{L}_{z} with eigenvalue $(m+1)\hbar$.
 - (d) Like H-atom, positronium is a bound state of an electron and a positron. Ground state 2 energy of positronium is a factor 'f' times that of an H-atom. Find the value of 'f'.

OR

GROUP-E

Answer any one question from the following

14.(a)	What is Normal Zeeman effect? Show with the diagram the longitudinal and transverse views of Normal Zeeman effect.	1+2
(b)	What is anomalous Zeeman effect? Obtain an expression for Lande g factor from it.	3
(c)	Draw Zeeman splittings of the D ₂ and D ₁ lines of sodium corresponding to transitions from the excited states $3^2 P_{3/2}$ and $3^2 P_{1/2}$ to the ground state $3^2 S_{1/2}$.	4
15.(a)	Show the vibrational and rotational energy levels of a diatomic molecule on a potential energy versus inter-atomic distance curve. Explain the formation of these levels.	2+2
(b)	Explain the physical reason behind the more pronounced deviation of higher vibrational levels in the case of a diatomic molecules from Harmonic Oscillator levels.	2
(c)	State Hund's rule for multi-electron atoms.	2
(d)	The spectroscopic term of the ground state of last unfilled subshell of an atom is ⁵ D. Find the total spin quantum number S and total orbital angular momentum quantum number L .	2

Y